Đề cương ôn tập học kỳ I môn Toán Lớp 9 - Trường THCS Kiên Giang
Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2
1) Tìm m để (d1) và (d2) cắt nhau .
2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính.
Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao?
Bài 3: Cho hàm số bậc nhất y = (1- 3m)x + m + 3 đi qua N(1;-1) , hàm số đồng biến hay nghịch biến ? Vì sao?
Bài 4: Cho hai đường thẳng y = mx – 2 ;(m và y = (2 - m)x + 4 ; . Tìm điều kiện của m để hai đường thẳng trên:
a)Song song; b)Cắt nhau .
Bài 5: Với giá trị nào của m thì hai đường thẳng y = 2x + 3+m và y = 3x + 5- m cắt nhau tại một điểm trên trục tung .Viết phương trình đường thẳng (d) biết (d) song song với (d’): y = và cắt trục hoành tại điểm có hoành độ bằng 10.
Bài 6: Viết phương trình đường thẳng (d), biết (d) song song với (d’) : y = - 2x và đi qua điểm A(2;7).
Bài 7: Viết phương trình đường thẳng đi qua hai điểm A(2; - 2) và B(-1;3).
Bài 8: Cho hai đường thẳng : (d1): y = và (d2): y =
a/ Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.
b/ Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)?
Bài 10: Cho hàm số : y = ax +b
a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,-2)
b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc tạo bởi đường thẳng trên với trục Ox ?
c; Tìm toạ độ giao điểm của đường thẳng trên với đường thẳng y = - 4x +3 ?
d; Tìm giá trị của m để đường thẳng trên song song với đường thẳng y = (2m-3)x +2
Bài 14 Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích
ĐỀ CƯƠNG ÔN TẬP HKI MÔN TOÁN LỚP 9 Phần A- Đại số Chương I CĂN BẬC HAI - CĂN BẬC BA I. ĐẠI SỐ: Tìm điều kiện xác định: Với giá trị nào của x thì các biểu thức sau đây xác định: 1) 2) 3) 4) 5) 6) 7) 8) Rút gọn biểu thức Bài 1 1) 2) 3) 4) 5) 6) 12) 7) 8) 9) 10) Bài 2 1) 2) 3) - 4) Giải phương trình: Giải các phương trình sau: 1) 2) 3) 4) 5) 6) 7) 8) c) d) CÁC BÀI TOÁN RÚT GỌN: Bài 1 Cho biểu thức : A = với ( x >0 và x ≠ 1) a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại . Bài 2. Cho biểu thức : P = ( Với a 0 ; a 4 ) a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1. Bài 3: Cho biểu thức A = a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A; c)Với giá trị nào của x thì A< -1. Bài 4: Cho biểu thức : B = a) Tìm TXĐ rồi rút gọn biểu thức B; b) Tính giá trị của B với x =3; c) Tìm giá trị của x để . Bài 5: Cho biểu thức: Q = ( a) Tìm TXĐ rồi rút gọn Q; b) Tìm a để Q dương; c) Tính giá trị của biểu thức biết a = 9- 4. Bài 6 : Cho biểu thức : K = a) Tìm x để K có nghĩa; b) Rút gọn K; c) Tìm x khi K= ; d) Tìm giá trị lớn nhất của K. Bài 7 : Cho biểu thức: G= a)Xác định x để G tồn tại; b)Rút gọn biểu thức G; c)Tính giá trị của G khi x = 0,16; d)Tìm gía trị lớn nhất của G; e)Tìm x Î Z để G nhận giá trị nguyên; f)Chứng minh rằng : Nếu 0 < x < 1 thì M nhận giá trị dương; g)Tìm x để G nhận giá trị âm; Chương II HÀM SỐ - HÀM SỐ BẬC NHẤT Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2 1) Tìm m để (d1) và (d2) cắt nhau . 2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính. Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao? Bài 3: Cho hàm số bậc nhất y = (1- 3m)x + m + 3 đi qua N(1;-1) , hàm số đồng biến hay nghịch biến ? Vì sao? Bài 4: Cho hai đường thẳng y = mx – 2 ;(mvà y = (2 - m)x + 4 ;. Tìm điều kiện của m để hai đường thẳng trên: a)Song song; b)Cắt nhau . Bài 5: Với giá trị nào của m thì hai đường thẳng y = 2x + 3+m và y = 3x + 5- m cắt nhau tại một điểm trên trục tung .Viết phương trình đường thẳng (d) biết (d) song song với (d’): y = và cắt trục hoành tại điểm có hoành độ bằng 10. Bài 6: Viết phương trình đường thẳng (d), biết (d) song song với (d’) : y = - 2x và đi qua điểm A(2;7). Bài 7: Viết phương trình đường thẳng đi qua hai điểm A(2; - 2) và B(-1;3). Bài 8: Cho hai đường thẳng : (d1): y = và (d2): y = a/ Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. b/ Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)? Bài 10: Cho hàm số : y = ax +b a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,-2) b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc µ tạo bởi đường thẳng trên với trục Ox ? c; Tìm toạ độ giao điểm của đường thẳng trên với đường thẳng y = - 4x +3 ? d; Tìm giá trị của m để đường thẳng trên song song với đường thẳng y = (2m-3)x +2 Bài 14 Cho hàm số y = (m -2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 Phần B - HÌNH HỌC Bài 1. Cho ABC vuông tại A, đường cao AH. a) Biết AH = 12cm, CH = 5cm. Tính AC, AB, BC, BH. b) Biết AB = 30cm, AH = 24cm. Tính AC, CH, BC, BH. c) Biết AB = 6cm, BC = 10cm. Tính AC, AH, BH, CH. d) Biết BH = 9cm, CH = 16cm. Tính AC, AB, BC, AH. Bài 2. Cho tam giác ABC vuông tại A có , BC = 20cm. a) Tính AB, AC b) Kẻ đường cao AH của tam giác. Tính AH, HB, HC. Bài 3. Giải tam giác ABC vuông tại A, biết: a) AB = 6cm, b) AB = 10cm, c) BC = 20cm, d) BC = 82cm, e) BC = 32cm, AC = 20cm f) AB = 18cm, AC = 21cm Chương II. ĐƯỜNG TRÒN: BÀI TẬP TỔNG HỢP HỌC KỲ I: Bài 1 Cho tam giác ABC (AB = AC ) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D a/ Chứng minh: AD là đường kính; b/ Tính góc ACD; c/ Biết AC = AB = 20 cm , BC =24 cm tính bán kính của đường tròn tâm (O). Bài 2 Cho ( O) và A là điểm nằm bên ngoài đường tròn . Kẻ các tiếp tuyến AB ; AC với đường tròn ( B , C là tiếp điểm ) a/ Chứng minh: OA BC b/Vẽ đường kính CD chứng minh: BD// AO c/Tính độ dài các cạnh của tam giác ABC biết OB =2cm ; OC = 4 cm? Bài 3: Cho đường tròn đường kính AB . Qua C thuộc nửa đường tròn kẻ tiếp tuyến d với đường tròn. Gọi E , F lần lượt là chân đường vuông góc kẻ từ A , B đến d và H là chân đường vuông góc kẻ từ C đến AB. Chửựng minh: a/ CE = CF b/ AC là phân giác của góc BAE c/ CH2 = BF . AE Bài 4: Cho tham giác ABC có 3 góc nhọn . Đường tròn (O) có đường kính BC cắt AB , AC theo thứ tự ở D , E . Gọi I là giao điểm của BE và CD . a) Chứng minh : AI ^ BC b) Chứng minh : c) Cho góc BAC = 600 . Chứng minh tam giác DOE là tam giác đều . Bài 5 : Cho đường tròn (O) đường kính AB . Kẻ tiếp tuyến Ax với đường tròn . Điểm C thuộc nửa đường tròn cùng nửa mặt phẳng với Ax với bờ là AB. Phân giác góc ACx cắt đường tròn tại E , cắt BC ở D .Chứng minh : a)Tam giác ABD cân . b) H là giao điểm của BC và DE . Chứng minh DH ^ AB . c) BE cắt Ax tại K . Chứng minh tứ giác AKDH là hình thoi .
Tài liệu đính kèm:
- de_cuong_on_tap_hoc_ky_i_mon_toan_lop_9_truong_thcs_kien_gia.doc