100 Bài tập môn Hình học Lớp 9 - Chuyên đề Tứ giác nội tiếp (có đáp án)

100 Bài tập môn Hình học Lớp 9 - Chuyên đề Tứ giác nội tiếp (có đáp án)

II) Bài tập

Bài tập 1

 Cho ABC vuông ở A. Trên AC lấy diểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt Đường tròn tại S. Chứng minh rằng:

a) Tứ giác ABCD nội tiếp.

b)

c) CA là phân giác của

Bài tập 2

Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD. Chứng minh:

a) Tứ giác ABEF, tứ giác DCEF nội tiếp .

b) CA là phân giác của .

c) Gọi M là trung điểm của DE. Chứng minh tứ giác BCMF nội tiếp

Bài tập 3

Tứ giác ABCD nội tiếp đường tròn đường kính AD . Hai đường chéo AC , BD cắt nhau tại E . Hình chiếu vuông góc của E trên AD là F . Đường thẳng CF cắt đường tròn tại điểm thứ hai là M . Giao điểm của BD và CF là N . Chứng minh :

a) CEFD là tứ giác nội tiếp .

b) Tia FA là tia phân giác của góc BFM .

c) BE . DN = EN . BD

Bài tập 4

Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B . Đường tròn đường kính BD cắt BC tại E . Các đường thẳng CD , AE lần lượt cắt đường tròn tại các điểm thứ hai F , G . Chứng minh :

 a) Tam giác ABC đồng dạng với tam giác EBD .

 b) Tứ giác ADEC và AFBC nội tiếp được trong một đường tròn .

 c) AC song song với FG .

 

doc 69 trang hapham91 111793
Bạn đang xem 20 trang mẫu của tài liệu "100 Bài tập môn Hình học Lớp 9 - Chuyên đề Tứ giác nội tiếp (có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ: TỨ GIÁC NỘI TIẾP
I) Các kiến thức cần nhớ
1) Khái niệm:
Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (Gọi tắt là tứ giác nột tiếp)
2) Định lí
- Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng 1800
-Nếu một tứ giác có tổng số đo hai góc đối diện bằng 1800 thì tứ giác đó nội tiếp đường tròn.
3) Dấu hiệu nhận biết (các cách chứng minh) tứ giác nội tiếp
- Tứ giác có tổng số do hai góc đối diện bằng 1800.
- Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.
- Tứ giác có bón đỉnh cách đều một điểm(mà ta có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.
- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc a.
II) Bài tập
Bài tập 1
 Cho ABC vuông ở A. Trên AC lấy diểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt Đường tròn tại S. Chứng minh rằng:
a) Tứ giác ABCD nội tiếp.
b) 
c) CA là phân giác của 
Bài tập 2
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD. Chứng minh:
a) Tứ giác ABEF, tứ giác DCEF nội tiếp .
b) CA là phân giác của .
c) Gọi M là trung điểm của DE. Chứng minh tứ giác BCMF nội tiếp
Bài tập 3
Tứ giác ABCD nội tiếp đường tròn đường kính AD . Hai đường chéo AC , BD cắt nhau tại E . Hình chiếu vuông góc của E trên AD là F . Đường thẳng CF cắt đường tròn tại điểm thứ hai là M . Giao điểm của BD và CF là N . Chứng minh : 
CEFD là tứ giác nội tiếp . 
Tia FA là tia phân giác của góc BFM . 
 BE . DN = EN . BD 
Bài tập 4
Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B . Đường tròn đường kính BD cắt BC tại E . Các đường thẳng CD , AE lần lượt cắt đường tròn tại các điểm thứ hai F , G . Chứng minh : 
	a) Tam giác ABC đồng dạng với tam giác EBD . 
	b) Tứ giác ADEC và AFBC nội tiếp được trong một đường tròn . 
	c) AC song song với FG . 
	d) Các đường thẳng AC , DE và BF đồng quy . 
Bài tập 5
 Cho tam giác vuông ABC (; AB > AC) và một điểm M nằm trên đoạn AC (M không trùng với A và C). Gọi N và D lần lượt là giao điểm thứ hai của BC và MB với đương tròn đường kính MC; gọi S là giao điểm thứ hai giữa AD với đường tròn đường kính MC; T là giao điểm của MN và AB. Chứng minh:
a. Bốn điểm A, M, N và B cùng thuộc một đường tròn.
b. CM là phân giác của góc .
c. .
Bài tập 6
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A dựng hai tiếp tuyến AM và AN với đường tròn (M, N là các tiếp điểm) và một cát tuyến bất kì cắt đường tròn tại P, Q. Gọi L là trung điểm của PQ.
a/ Chứng minh 5 điểm: O; L; M; A; N cùng thuộc một đường tròn.
b/ Chứng minh LA là phân giác của 
c/ Gọi I là giao điểm của MN và LA. Chứng minh MA2 = AI.AL
d/ Gọi K là giao điểm của ML với (O). Chứng minh rằng KN // AQ.
e/ Chứng minh ∆KLN cân.
Bài tập 7
Cho đường trũn (O; R) tiếp xỳc với đường thẳng d tại A. Trờn d lấy điểm H khụng trựng với điểm A và AH <R. Qua H kẻ đường thẳng vuụng gúc với d, đường thẳng này cắt đường trũn tại hai điểm E và B ( E nằm giữa B và H)
1. Chứng minh gúc bằng gúc và ∆ABH đồng dạng với ∆EAH.
2. Lấy điểm C trờn d sao cho H là trung điểm của đoạn AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứ giỏc nội tiếp.
3. Xỏc định vị trớ điểm H để AB= R.
Bài tập 8
 Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
Các tứ giác AEHF, BFHD nội tiếp .
Bốn điểm B, C, E, F cùng nằm trên một đường tròn.
AE.AC = AH.AD; AD.BC = BE.AC.
H và M đối xứng nhau qua BC.
5. Xác định tâm đường tròn nội tiếp ∆DEF
Bài tập 9
 Cho DABC không cân, đường cao AH, nội tiếp trong đường tròn tâm O. Gọi E, F thứ tự là hình chiếu của B, C lên đường kính AD của đường tròn (O) và M, N thứ tự là trung điểm của BC, AB. Chứng minh: 
Bốn điểm A, B, H, E cùng nằm trên đường tròn tâm N và HE// CD.
M là tâm đường tròn ngoại tiếp DHEF.
Bài tập 10
 Cho đường tròn tâm O và điểm A ở bên ngoài đường tròn. Vẽ các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B và C là các tiếp điểm). Gọi H là trung điểm của DE.
CMR: A,B, H, O, C cùng thuộc một đường tròn. Xác định tâm của đường tròn này.
Chứng minh: HA là tia phân giác .
Gọi I là giao điểm của BC và DE. Chứng minh: AB2 = AI.AH
BH cắt (O) tại K. Chứng minh: AE // CK.
Bài tập 11
Từ một điểm S ở ngoài đường tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của đường tròn đó.
Gọi E là trung điểm của dây CD. Chứng minh 5 điểm S, A, E, O, B cùng thuộc một đường tròn
Nếu SA = AO thì SAOB là hình gì? tại sao? 
c) Chứmg minh rằng: 
Bài tập 12
Cho nửa đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC và AD cắt Bx lần lượt ở E, F (F ở giữa B và E).
Chứng minh AC. AE không đổi.
Chứng minh .
Chứng minh rằng CEFD là tứ giác nội tiếp.
Bài tập 13
Trên đường thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vuông góc với dt. Trên tia Ax lấy I. Tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P. 
1) Chứng minh tứ giác CBPK nội tiếp được đường tròn .
2) Chứng minh AI.BK = AC.CB
3) Giả sử A, B, I cố định hãy xác định vị trí điểm C sao cho diện tích hình thang vuông ABKI lớn nhất.
Bài tập 14
 Cho DABC vuông tại A. Kẻ đường cao AH, vẽ đường tròn đường kính AH, đường tròn này cắt AB tại E, cắt AC tại F.
 a) Chứng minh AEHF là hình chữ nhật.
b) Chứng minh: BEFC là tứ giác nội tiếp .
c) Chứng minh: AB.AE = AC.AF	
d) Gọi M là là giao điểm của CE và BF. Hãy so sánh diện tích của tứ giác AEMF và diện tích của tam giác BMC.
Bài tập 15
Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp ∆AHE.
Chứng minh tứ giác CEHD nội tiếp .
Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
Chứng minh ED = BC.
Chứng minh DE là tiếp tuyến của đường tròn (O).
Tính độ dài DE biết DH = 2 cm, AH = 6 cm.
Bài tập 16
Từ điểm M ngoài đường trũn (O) vẽ 2 tiếp tuyến MA và MB. Trờn cung nhỏ AB lấy 1 điểm C. Vẽ CD AB; CE MA; CF MB. Gọi I là giao điểm của AC và DE; K là giao điểm của BC và DF. Chứng minh rằng:
a) Tứ giỏc AECD; BFCD nội tiếp được.
b) CD2 = CE.CF
c) IK CD	
Bài tập 17
Cho tam giác đều ABC nội tiếp đường tròn (O). M là điểm di động trên cung nhỏ BC. Trên đoạn thẳng MA lấy điểm D sao cho MD = MC.
	a) Chứng minh đều. 
b) Chứng minh MB + MC = MA.
	c) Chứng minh tứ giác ADOC nội tiếp.
	d) Khi M Di động trên cung nhỏ BC thì D di động trên đường cố định nào ?
Bài tập 18
Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ^ MB, BD ^ MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
Chứng minh tứ giác AMBO nội tiếp.
Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn .
Chứng minh OI.OM = R2; OI. IM = IA2.
Chứng minh OAHB là hình thoi.
Chứng minh ba điểm O, H, M thẳng hàng.
Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.
Bài tập 19
Cho 3 điểm A; B; C cố định thẳng hàng theo thứ tự. Vẽ đường tròn (O) bất kỳ đi qua B và C (BC không là đường kính của (O)). Kẻ từ các tiếp tuyến AE và AF đến (O) (E; F là các tiếp điểm). Gọi I là trung điểm của BC; K là trung điểm của EF, giao điểm của FI với (O) là D. Chứng minh:
AE2 = AB.AC
Tứ giác AEOF nội tiếp
Năm điểm A; E; O; I; F cùng nằm trên một đường tròn.
ED song song với Ac.
Khi (O) thay đổi tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc một đường thẳng cố định.
Bài tập 20
Cho DABC có các góc đều nhọn và . Vẽ đường cao BD và CE của DABC. Gọi H là gia điểm của BD và CE.
Chứng minh tứ giác ADHE nội tiếp.
Tính tỉ số 
c) Gọi O là tâm đường tròn ngoại tiếp DABC. Chứng minh OA ^ DE
Bài tập 21
Cho tam giác nhọn PBC. Gọi A là chân đường cao kẻ từ P xuống cạnh BC. Đường tròn đường kính BC cắt PB, PC lần lượt ở M và N. Nối N với A cắt đường tròn đường kính BC ở điểm thứ hai E
a/ Chứng minh rằng: 4 điểm A, B, N, P cùng nằm trên một đường tròn. Hãy xác định tâm và bán kính đường tròn ấy.
b/ Chứng minh: EM vuông góc với BC
c/ Gọi F là điểm đối xứng của N qua BC. Chứng minh rằng AM.AF = AN.AE
Bài tập 22
Cho tam giác vuông ABC (); trên đoạn AC lấy điểm D (D không trùng với các điểm A và C). Đường tròn đường kính DC cắt BC tại các điểm thứ hai E; đường thẳng BD cắt đường tròn đường kính DC tại điểm F (F không trùng với D). Chứng minh:
a. Tam giác ABC đồng dạng với tam giác EDC.
b. Tứ giác ABCF nội tiếp đường tròn.
c. AC là tia phân giác của góc EAF.
Bài tập 23
 Cho hình thang cân ABCD (AB>CD; AB//CD) nội tiếp trong đường tròn (O). Tiếp tuyến với đường tròn (O) tại A và D cắt nhau tại E. Gọi I là giao điểm của hai đường chéo AC và BD
a/ Chứng minh: Tứ giác AEDI nội tiếp
b/ Chứng minh AB//EI
c/ Đường thẳng EI cắt cạnh bên AD và BC của hình thang tương ứng ở R và S. Chứng minh:
* I là trung điểm của RS
* 
Bài tập 24
Cho đường tròn (O; R) có hai đường kính AOB và COD vuông góc với nhau. Lấy điểm E bất kì trên OA, nối CE cắt đường tròn tại F. Qua F dựng tiếp tuyến Fx với đ]ờng tròn, qua E dựng Ey vuông góc với OA. Gọi I là giao điểm của Fx và Ey 
a/ Chứng minh I; E; O; F cùng nằm trên một đường tròn.
b/ Tứ giác CEIO là hình gì? vì sao?
c/ Khi E chuyển động trên AB thì I chuyển động trên đường nào?
Bài tập 25
 Cho nửa đường tròn đường kính BC bán kính R và điểm A trên nửa đường tròn (A khác B và C). Từ A hạ AH vuông góc với BC. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ nửa đường tròn đường kính BH cắt AB tại E, nửa đường tròn đường kính HC cắt AC tại F.
a. Tứ giác AFHE là hình gì? Tại sao?
b. Chứng minh BEFC là tứ giác nội tiếp.
c. Hãy xác định vị trí của điểm A sao cho tứ giác AFHE có diện tích lớn nhất. Tính diện tích lớn nhất đó theo R.
Bài tập 26
Cho 3 điểm M, N, P thẳng hàng theo thứ tự đó. Một đường tròn (O) thay đổi đi qua hai điểm M, N. Từ P kẻ các tiếp tuyến PT, PT’ với đường tròn (O)
Chứng minh: PT2 = PM.PN. Từ đó suy ra khi (O) thay đổi vẫn qua M, N thì T, T’ thuộc một đường tròn cố định.
Gọi giao điểm của TT’ với PO, PM là I và J. K là trung điểm của MN. 
 Chứng minh: Các tứ giác OKTP, OKIJ nội tiếp.
Chứng minh rằng: Khi đường tròn (O) thay đổi vẫn đi qua M, N thì TT’ luôn đi qua điểm cố định.
Cho MN = NP = a. Tìm vị trí của tâm O để góc TPT’ = 600.
Bài tập 27
	Cho DABC vuông ở A. Trên AC lấy điểm M (M≠A và C). Vẽ đường tròn đường kính MC. Gọi T là giao điểm thứ hai của cạnh BC với đường tròn. Nối BM kéo dài cắt đường tròn tại điểm thứ hai là D. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai S. Chứng minh:
Tứ giác ABTM nội tiếp
Khi M chuyển động trên AC thì có số đo không đổi.
AB//ST.
Bài tập 28
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại A, B. Đường vuông góc với AB kẻ qua B cắt (O) và (O') lần lượt tại các điểm C, D. Lấy M trên cung nhỏ BC của đường tròn (O). Gọi giao điểm thứ hai của đường thẳng MB với đường tròn (O') là N và giao điểm của hai đường thẳng CM, DN là P.
a. Tam giác AMN là tam giác gì, tại sao?
b. Chứng minh ACPD nội tiếp được đường tròn.
c. Gọi giao điểm thứ hai của AP với đường tròn (O') là Q, chứng minh rằng BQ // CP.
Bài tập 29
Cho ABC vuụng tại A (AB < AC). H bất kỳ nằm giữa A và C. Đường trũn (O) đường kớnh HC cắt BC tại I. BH cắt (O) tại D.
a) Chứng minh tứ giỏc ABCD nội tiếp.
b) AB cắt CD tại M. Chứng minh 3 điểm H; I; M thẳng hàng
c) AD cắt (O) tại K. Chứng minh CA là tia phõn giỏc của 
Bài tập 30
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = 2/3 AO. Kẻ dây MN vuông góc với AB tại I, gọi C là điểm tuỳ ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối Ac cắt MN tại E.
Chứng minh tứ giác IECB nội tiếp .
Chứng minh tam giác AME đồng dạng với tam giác ACM.
Chứng minh AM2 = AE.AC.
Chứng minh AE. AC – AI.IB = AI2 .
Hãy xác định vị trí của C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài tập 31
Cho nửa đường trũn (O;R) đường kớnh AB, dõy AC. Gọi E là điểm chớnh giữa cung AC bỏn kớnh OE cắt AC tại H, vẽ CK song song với BE cắt AE tại K.
Chứng minh tứ giỏc CHEK nội tiếp.
Chứng minh KHAB
Cho BC = R. Tớnh PK.
Bài tập 32
Cho tam giác cân ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A , O là trung điểm của IK.
Chứng minh B, C, I, K cùng nằm trên một đường tròn.
Chứng minh AC là tiếp tuyến của đường tròn (O).
3. Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm
Bài tập 33
Cho điểm A bên ngoài đường tròn (O ; R). Từ A vẽ tiếp tuyến AB, AC và cát tuyến ADE 
 đến đường tròn (O). Gọi H là trung điểm của DE.
	a) Chứng minh năm điểm : A, B, H, O, C cùng nằm trên một đường tròn.
	b) Chứng minh HA là tia phân giác của .
	c) DE cắt BC tại I. Chứng minh : .
	d) Cho và . Tính HI theo R.
Bài tập 34
Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kể tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K.
a) Chứng minh rằng: EFMK là tứ giác nội tiếp.
b) Chứng minh rằng: AI2 = IM . IB.
c) Chứng minh BAF là tam giác cân.
d) Chứng minh rằng : Tứ giác AKFH là hình thoi.
e) Xác định vị trí của M để tứ giác AKFI nội tiếp được một đường tròn.
Bài tập 35
Cho hai đường trũn (O1), (O2) cú bỏn kớnh bằng nhau và cắt nhau ở A và B. Vẽ cỏt tuyến qua B khụng vuụng gúc với AB, nú cắt hai đường trũn ở E và F. (E Î (O1); F Î (O2)).
Chứng minh AE = AF.
Vẽ cỏt tuyến CBD vuụng gúc với AB ( CÎ (O1); D Î (O2)). Gọi P là giao điểm của CE và DF. Chứng minh rằng:
Cỏc tứ giỏc AEPF và ACPD nội tiếp được đường trũn.
Gọi I là trung điểm của EF chứng minh ba điểm A, I, P thẳng hàng.
Khi EF quay quanh B thỡ I và P di chuyển trờn đường nào?
Bài tập 36
Cho hình vuông ABCD. Trên cạnh BC, CD lần lượt lấy điểm E, F sao cho . Biết BD cắt AE, AF theo thứ tự tại G, H. Chứng minh: 
ADFG, GHFE là các tứ giác nội tiếp 
DCGH và tứ giác GHFE có diện tích bằng nhau
Bài tập 37
Cho đường tròn tâm O bán kính R, hai điểm C và D thuộc đường tròn, B là trung điểm của cung nhỏ CD. Kẻ đường kính BA; trên tia đói của tia AB lấy điểm S, nối S với C cắt (O) tại M; MD cắt AB tại K; MB cắt AC tại H.
a. Chứng minh: = , từ đó suy ra tứ giác AMHK nội tiếp.
b. Chứng minh: HK // CD.
c. Chứng minh: OK.OS = R2.
Bài tập 38
Cho đường tròn (O), một đường kính AB cố định, một điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tuỳ ý thuộc cung lớn MN, sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
a. Chứng minh tứ giác IECB nội tiếp được trong một đường tròn.
b. Chứng minh AME đồng dạng với ACM và AM2 = AE.AC.
c. Chứng minh AE.AC AI.IB = AI2.
d. Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài tập 39
Cho ba điểm A, B, C trên một đường thẳng theo thứ tự ấy và đường thẳng d vuông góc với AC tại A. Vẽ đường tròn đường kính BC và trên đó lấy điểm M bất kì. Tia CM cắt đường thẳng d tại D; Tia AM cắt đường tròn tại điểm thứ hai N; Tia DB cắt đường tròn tại điểm thứ hai P.
Chứng minh: Tứ giác ABMD nội tiếp được.
Chứng minh: Tích CM. CD không phụ thuộc vào vị trí điểm M.
Tứ giác APND là hình gì? Tại sao?
Chứng minh trọng tâm G của tam giác MAB chạy trên một đường tròn cố định.
Bài tập 40
 Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn kẻ từ A tiếp xúc với đường tròn ở B và C. Gọi M là điểm tuỳ ý trên đường tròn (M khác B và C). Gọi H; K; I lần lượt là chân các đường vuông góc kẻ từ M xuống BC; CA; AB.
a/ Chứng minh: Tứ giác MHBI, MHCK nội tiếp.
b/ Chứng minh:.
c/ Chứng minh: MH2 = MI.MK.
Bài tập 41
Cho đường tròn (O) đường kính AB = 2R. Đường thẳng (d) tiếp xúc với đường tròn (O) tại A. M và Q là hai điểm trên (d) sao cho M≠A, M≠Q, Q≠A. Các đường thẳng BM và BQ lần lượt cắt đường tròn (O) tại các điểm thứ hai là N và P. Chứng minh:
Tích BN.BM không đổi.
Tứ giác MNPQ nội tiếp.
Bất đẳng thức: BN + BP + BM + BQ > 8R
Bài tập 42
Cho tứ giác ABCD nội tiếp trong đường tròn tâm O và P là trung điểm của cung AB không chứa C và D. Hai dây PC và PD lần lượt cắt dây AB tại E và F. Các dây AD và PC kéo dài cắt nhau tại I, các dây BC và PD kéo dài cắt nhau tại K. Chứng minh rằng:
a. Góc CID bằng góc CKD.
b. Tứ giác CDFE nội tiếp được một dường tròn.
c. IK // AB.
Bài tập 43
Trên đường tròn (O; R) đường kính AB, lấy hai điểm M, E theo thứ tự A, M, E, B (hai điểm M, E khác hai điểm A, B). AM cắt BE tại C; AE cắt BM tại D.
a. Chứng minh MCED là một tứ giác nội tiếp và CD vuông góc với AB.
b. Gọi H là giao điểm của CD và AB. Chứng minh BE.BC = BH.BA.
c. Chứng minh các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm nằm trên đường thẳng CD.
d. Cho biết và . Tính diện tích tam giác ABC theo R.
Bài tập 44
Cho đường tròn (O) đường kính AB. Một cát tuyến MN quay xung quanh trung điểm H của OB. Giọi I là trung điểm của MN. Từ A kẻ Ax vuông góc với MN tại K. Gọi C là giao điểm của Ax với tia BI.
a/ Chứng minh rằng: BN// MC
b/ Chứng minh rằng: Tứ giác OIKC là hình chữ nhật
c/ Tiếp tuyến Bt với đường tròn (O) cắt tia AM ở E, cắt tia Ax ở F. Gọi D là giao điểm thứ hai của tia Ax với (O). Chứng minh rằng: tứ giác DMEF nội tiếp
Bài tập 45
 Cho D ABC cân (AB = AC) và góc A nhỏ hơn 600; trên tia đối của tia AC lấy điểm D sao cho AD = AC.
Tam giác BCD là tam giác gì? tại sao?
Kéo dài đường cao CH của D ABC cắt BD tại E. Vẽ đường tròn tâm E tiếp xúc với CD tại F. Qua C vẽ tiếp tuyến CG của đường tròn này. Chứng minh: Bốn điểm B, E, C, G thuộc một đường tròn. 
Các đường thẳng AB và CG cắt nhau tại M, tứ giác AFGM là hình gì? Tại sao?
Chứng minh: D MBG cân.
Bài tập 46
Cho đường tròn (O) bán kính R, đường thẳng d không qua O và cắt đường tròn tại hai điểm A, B . Từ một điểm C trên d (C nằm ngoài đường tròn), kẻ hai tiếp tuyến CM, CN với đường tròn (M, N thuộc (O)). Gọi H là trung điểm của AB, đường thẳng OH cắt tia CN tại K.
a. Chứng minh bốn điểm C, O, H, N cùng nằm trên một đường tròn.
b. Chứng minh KN.KC = KH.KO.
c. Đoạn thẳng CO cắt đường tròn (O) tại I, chứng minh I cách đều CM, CN và MN.
d. Một đường thẳng đi qua O và song song với MN cắt các tia CM, CN lần lượt tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF là nhỏ nhất.
Bài tập 47
Cho BC là dây cung cố định của đường tròn (O; R) (0 < BC < 2R). A là một điểm di động trên cung lớn BC sao cho ABC nhọn. Các đường cao AD; BE; CF cắt nhau tại H (DBC; ECA; FAB)
Chứng minh: Tứ giác BCEF nội tiếp. Từ đó suy ra AE.AC = AF.AB
Gọi A' là trung điểm của BC. Chứng minh rằng: AH = 2OA'
Kẻ đường thẳng d tiếp xúc với đường tròn (O) tại A. Đặt S là diện tích ABC, 2p là chu vi DEF. Chứng minh:
d // EF
S = p.R
Bài tập 48
Cho hình thang ABCD có đáy lớn AD và đáy nhỏ BC nội tiếp trong đường tròn tâm O; AB và CD kéo dài cắt nhau tại I. Các tiếp tuyến của đường tròn tâm O tại B và D cắt nhau tại điểm K.
a. Chứng minh các tứ giác OBID và OBKD là các tứ giác nội tiếp.
b. Chứng minh IK song song với BC.
c. Hình thang ABCD phải thoả mãn điều kiện gì để tứ giác AIKD là hình bình hành.
Bài tập 49
Cho đường tròn (O;R) và một điểm A nằm trên đường tròn. Một góc xAy = 900 quay quanh A và luôn thoả mãn Ax, Ay cắt đường tròn (O). Gọi các giao điểm thứ hai của Ax, Ay với (O) tương ứng là B, C. Đường tròn đường kính AO cắt AB, AC tại các điểm thứ hai tương ứng là M, N. Tia OM cắt đường tròn tại P. Gọi H là trực tâm tam giác AOP. Chứng minh rằng
AMON là hình chữ nhật
MN//BC
Tứ giác PHOB nội tiếp
Xác định vị trí của góc xAy sao cho tam giác AMN có diện tích lớn nhất.
Bài tập 50
 Cho đường tròn (O) đường kính AB. điểm I nằm giữa A và O (I khác A và O). Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tuỳ ý thuộc cung lớn MN (C khác M, N khác B). Nối AC cắt MN tại E. Chứng minh:
a) Tứ giác IECB nội tiếp.
b) AM2 = AE.AC
c) AE.AC – AI.IB = AI2
Bài tập 51
Cho nửa đường tròn (O) đường kính AB và hai điểm C, D thuộc nửa đường tròn sao cho cung AC nhỏ hơn 900 và góc COD = 900. Gọi M là một điểm trên nửa đường tròn sao cho C là điểm chính giữa cung AM. Các dây AM, BM cắt OC, OD lần lượt tại E, F
a) Tứ giác OEMF là hình gì? Tại sao?
b) Chứng minh: D là điểm chính giữa cung MB.
c) Một đường thẳng d tiếp xúc với nửa đườngtròn tại M và cắt các tia OC, OD lần lượt tại I, K. Chứng minh các tứ giác OBKM và OAIM nội tiếp được.
d) Giả sử tia AM cắt tia BD tại S. Hãy xác định vị trí của C và D sao cho 5 điểm M, O, B, K, S cùng thuộc một đường tròn.
Bài tập 52
 Cho đường tròn (O) và hai điểm A, B phân biệt thuộc (O) sao cho đường thẳng AB không đi qua tâm O. Trên tia đối của tia AB lấy điểm lấy điểm M khác A, từ M kẻ hai tiếp tuyến phân biệt ME, MF với đường tròn (O) (E, F là các tiếp điểm). Gọi H là trung điểm của dây cung AB. Các điểm K và I theo thứ tự là giao điểm của đường thẳng EF với các đường thẳng OM và OH.
a) Chứng minh 5 điểm M, O, H, E, F cùng nằm trên một đường tròn.
b) Chứng minh: OH.OI = OK. OM
c) Chứng minh: IA, IB là các tiếp tuyến của đường tròn (O)
Bài tập 53
Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ). Gọi M là trung điểm của đoạn AB. Qua M kẻ dây cung DE vuông góc với AB. CD cắt đường tròn đường kính BC tại I. 
Chứng minh tứ giác BMDI nội tiếp .
Chứng minh tứ giác ADBE là hình thoi.
Chứng minh BI // AD.
Chứng minh I, B, E thẳng hàng.
Chứng minh MI là tiếp tuyến của đường tròn đường kính BC.
Bài tập 54
Cho đường tròn (0) và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đường tròn (B, C, M, N thuộc đường tròn và AM < AN). Gọi E là trung điểm của dây MN, I là giao điểm thứ hai của đường thẳng CE với đường tròn.
Chứng minh: Bốn điểm A, 0, E, C cùng thuộc một đường tròn.
Chứng minh: góc AOC bằng góc BIC
Chứng minh: BI // MN
Xác định vị trí cát tuyến AMN để diện tích tam giác AIN lớn nhất.
Bài tập 55
Cho đường tròn (O) có tâm O, đường kính AB. Trên tiếp tuyến của đường tròn O tại A lấy điểm M (M không trùng với A). Từ M kẻ cát tuyến MCD (C nằm giữa M và D; tia MC nằm giữa tia MA và tia MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tai E và F. Chứng minh:
a. Bốn điểm A, M, I và O nằm trên một đường tròn.
b. .
c. O là trung điểm của FE
Bài tập 56
Cho nửa đường tròn (0) đường kính AB, M thuộc cung AB, C thuộc OA. Trên nửa mặt phẳng bờ AB có chứa M kẻ tia Ax,By vuông góc với AB .Đường thẳng qua M vuông góc với MC cắt Ax, By tại P và Q .AM cắt CP tại E, BM cắt CQ tại F.
a/ Chứng minh : Tứ giác APMC, EMFC nội tiếp 
b/ Chứng minh : EF//AB
c/ Tìm vị trí của điểm C để tứ giác AEFC là hình bình hành
Bài tập 57
Cho đường tròn (O) và đường thẳng xy ngoài đường tròn. Đường thẳng đi qua O vuông góc với xy tại H cắt đường tròn (O) tại A và B. M là điểm trên (O), đường thẳng AM cắt xy tại E, đường thẳng BM cắt xy tại F, tiếp tuyến tại M cắt xy tại I, đường thẳng AF cắt (O) tại K. Nối E với K.
Chứng minh: IM = IF
Chứng minh: 4 điểm E, M, K, F cùng thuộc một đường tròn.
Chứng minh: IK là tiếp tuyến của (O).
Tìm tập hợp tâm đường tròn ngoại tiếp AMH khi M di động trên (O)
Bài tập 58 
 Cho đường tròn (O; R) có đường kính AB; điểm I nằm giữa hai điểm A và O. Kẻ đường thẳng vuông góc với AB tại I, đường thẳng này cắt đường tròn (O; R) tại M và N. Gọi S là giao điểm BM và AN. Qua S kẻ đường thẳng song song với MN, đường thẳng này cắt các đường thẳng AB và AM lần lượt ở K và H. Hãy chứng minh:
1) Tứ giác SKAM là tứ giác nội tiếp và HS.HK=HA.HM.
2) KM là tiếp tuyến của đường tròn (O; R)
3) Ba điểm H; N; B thẳng hàng
Bài tập 59
Cho đường tròn (0; R), một dây CD có trung điểm M. Trên tia đối của tia DC lấy điểm S, qua S kẻ các tiếp tuyến SA, SB với đường tròn. Đường thẳng AB cắt các đường thẳng SO ; OM tại P và Q.
Chứng minh tứ giác SPMQ, tứ giác ABOM nội tiếp.
Chứng minh SA2 = SD. SC. 
Chứng minh OM. OQ không phụ thuộc vào vị trí điểm S.
Khi BC // SA. Chứng minh tam giác ABC cân tại A
Xác định vị điểm S trên tia đối của tia DC để C, O, B thẳng hàng và BC // SA.
Bài tập 60
Cho nửa đường tròn (0) đường kính AB, M là một điểm chính giữa cung AB. K thuộc cung BM ( K khác M và B ). AK cắt MO tại I.
Chứng minh : Tứ giác OIKB nội tiếp được trong một đường tròn.
Gọi H là hình chiếu của M lên AK. Chứng minh : Tứ giác AMHO nội tiếp .
Tam giác HMK là tam giác gì ?
Chứng minh : OH là phân giác của góc MOK.
Xác định vị trí của điểm K để chu vi tam giác OPK lớn nhất (P là hình chiếu của K lên AB)
 Bài tập 61
Cho tam giác ABC với ba góc nhọn nội tiếp đường tròn (0). Tia phân giác trong của góc B, góc C cắt đường tròn này thứ tự tại D và E, hai tia phân giác này cắt nhau tại F. Gọi I, K theo thứ tự là giao điểm của dây DE với các cạnh AB, AC.
a) Chứng minh: các tam giác EBF, DAF cân.
b) Chứng minh tứ giác DKFC nội tiếp và FK // AB
c) Tứ giác AIFK là hình gì ? Tại sao ?
d) Tìm điều kiện của tam giác ABC để tứ giác AEFD là hình thoi đồng thời có diện tích gấp 3 lần diện tích tứ giác AIFK.
Bài tập 62
Cho đường tròn (O), một đường kính AB cố định, trên đoạn OA lấy điểm I sao cho
 AI = . Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tuỳ ý thuộc cung lớn MN ( C không trùng với M, N, B). Nối AC cắt MN tại E.
Chứng minh : Tứ giác IECB nội tiếp.
Chứng minh : Các tam giác AME, ACM đồng dạng và AM2 = AE . AC
Chứng minh : AE .AC – AI .IB = AI2.
Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài tập 63
Cho tứ giác ABCD nội tiếp đường tròn (O;R)(AB < CD). Gọi P là điểm chính giữa của cung nhỏ AB ; DP cắt AB tại E và cắt CB tại K ; CP cắt AB tại F và cắt DA tại I. 
Chứng minh: Tứ giác CKID nội tiếp được
Chứng minh: IK // AB.
Chứng minh: Tứ giác CDFE nội tiếp được
Chứng minh: AP2 = PE .PD = PF . PC
Chứng minh : AP là tiếp tuyến của đường tròn ngoại tiếp tam giác AED.
Gọi R1 , R2 là các bán kính đường tròn ngoại tiếp các tam giác AED và BED.Chứng minh: R1 + R2 = 
Bài tập 64
Cho hình vuông ABCD cố định , có độ dài cạnh là a. E là điểm đi chuyển trên đoạn CD (E khác D), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K.
Chứng minh DABF = DADK từ đó suy ra DAFK vuông cân .
Gọi I là trung điểm của FK, Chứng minh I là tâm đường tròn đi qua A , C, F , K.
Tính số đo góc AIF, suy ra 4 điểm A, B, F, I cùng nằm trên một đường tròn .
Bài tập 65
Cho góc vuông xOy , trên Ox, Oy lần lượt lấy hai điểm A và B sao cho OA = OB . M là một điểm bất kỳ trên AB. Dựng đường tròn tâm O1 đi qua M và tiếp xúc với Ox tại A, đường tròn tâm O2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N .
Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB .
Chứng minh M nằm trên một cung tròn cố định khi M thay đổi .
Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất .
Bài tập 66
Cho điểm A bờn ngoài đường trũn (O ; R). Từ A vẽ tiếp tuyến AB, AC và cỏt tuyến ADE đến đường trũn (O). Gọi H là trung điểm của DE.
	a) Chứng minh năm điểm : A, B, H, O, C cựng nằm trờn một đường trũn.
	b) Chứng minh HA là tia phõn giỏc của .
	c) DE cắt BC tại I. Chứng minh : .
Bài tập 67
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O . Đường phân giác trong của góc A , B cắt đường tròn tâm O tại D và E , gọi giao điểm hai đường phân giác là I , đường thẳng DE cắt CA, CB lần lượt tại M , N .
Chứng minh tam giác AIE và tam giác BID là tam giác cân .
Chứng minh tứ giác AEMI là tứ giác nội tiếp và MI // BC .
Tứ giác CMIN là hình gì ? 
Bài tập 68
Cho tam giaực ABC coự ba goực nhoùn (AB < AC). ẹửụứng troứn ủửụứng kớnh BC caột AB, AC theo thửự tửù taùi E vaứ F. Bieỏt BF caột CE taùi H vaứ AH caột BC taùi D.
a) Chửựng minh tửự giaực BEFC noọi tieỏp vaứ AH vuoõng goực vụựi BC.
b) Chửựng minh AE.AB = AF.AC.
c) Goùi O laứ taõm ủửụứng troứn ngoùai tieỏp tam giaực ABC vaứ K laứ trung ủieồm cuỷa BC. Tớnh tổ soỏ khi tửự giaực BHOC noọi tieỏp.
d) Cho HF = 3cm , HB = 4cm , CE = 8cm vaứ HC > HE. Tinh HC.
Bài tập 69
Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM .
CMR: BCHK là tứ giác nội tiếp. 
Tính AH.AK theo R.
Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó
Bài tập 70
	Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B . Một đường thẳng đi qua A cắt đường tròn (O1) , (O2) lần lượt tại C,D , gọi I , J là trung điểm của AC và AD .
Chứng minh tứ giác O1IJO2 là hình thang vuông .
Gọi M là giao diểm của CO1 và DO2 . Chứng minh O1 , O2 , M , B nằm trên một đường tròn 
E là trung điểm của IJ , đường thẳng CD quay quanh A . Tìm tập hợp điểm E.
Xác định vị trí của dây CD để dây CD có độ dài lớn nhất .
Bài tập 71
	Cho tam giác ABC , góc B và góc C nhọn . Các đường tròn đường kính AB , AC cắt nhau tại D . Một đường thẳng qua A cắt đường tròn đường kính AB , AC lần lượt tại E và F .
Chứng minh B , C , D thẳng hàng .
Chứng minh B, C , E , F nằm trên một đường tròn .
Xác định vị trí của đường thẳng qua A để EF có độ dài lớn nhất .
Bài tập 72
	 Cho đường tròn tâm O và cát tuyến CAB ( C ở ngoài đường tròn ) . Từ điểm chính giữa của cung lớn AB kẻ đường kính MN cắt AB tại I , CM cắt đường tròn tại E , EN cắt đường thẳng AB tại F 
Chứng minh tứ giác MEFI là tứ giác nội tiếp .
Chứng minh góc CAE bằng góc MEB .
Chứng minh : CE . CM = CF . CI = CA . CB 
Bài tập 73
Cho D ABC có 3 góc nhọn AC > BC nội tiếp (O) . Vẽ các tiếp tuyến với (O) tại A và B, các tiếp tuyến này cắt nhau tại M . Gọi H là hình chiếu vuông góc của O trên MC. CMR
a/ MAOH là tứ giác nội tiếp
b/ Tia HM là phân giác của góc AHB
c/ Qua C kẻ đường thẳng song song với AB cắt MA, MB lần lượt tại E, F. Nối EH cắt AC tại P, HF cắt BC tại Q. Chứng minh rằng QP // EF.
Bài tập 74
	Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B .

Tài liệu đính kèm:

  • doc100_bai_tap_mon_hinh_hoc_lop_9_chuyen_de_tu_giac_noi_tiep_co.doc